Rare Variants in the ADAMTS13 Von Willebrand Factor-Binding Domain Contribute to Pediatric Stroke.
نویسندگان
چکیده
BACKGROUND Recently, we reported a gene network of ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) genes as central component of the genetic risk contributing to pediatric stroke. ADAMTS13 is a prime example for such a key component as it cleaves von Willebrand factor multimers, reduces platelet adhesion and aggregation, and downregulates thrombus formation and inflammation. METHODS AND RESULTS We characterized the genetic architecture of ADAMTS13 through targeted next-generation sequencing of 48 affected children and their unaffected siblings and identified in total 241 variants (single nucleotide polymorphisms or insertions/deletions) in the ADAMTS13 gene. From these, based on significance in the sibship disequilibrium test (P<0.05) or protein-altering properties, we selected 21 common variants covering the complete ADAMTS13 gene for genotyping in 270 trios and subsequent association analyses. Transmission disequilibrium testing was performed for affection status and ADAMTS13 activity levels using PLINK and FBAT, respectively. Ten single nucleotide polymorphisms were significantly associated with pediatric stroke (P<0.05 to P<0.001), 2 of which (rs2285489 and rs28793911) were also significantly associated with ADAMTS13 levels (P=0.0004 and P=0.0092). The resulting protective haplotype H1.1. (T:U 95.5: 144.4; P=0.0016) is associated with increased ADAMTS13 levels (age-adjusted P=0.0108). Haplotype association using a sliding window approach assigns this association to the ADAMTS13 von Willebrand factor-binding domain (P=1.2×10(-4)). CONCLUSIONS Our data provide a link between the genetic architecture of ADAMTS13, ADAMTS13 levels, and stroke susceptibility. Altogether, these studies render ADAMTS13 an attractive candidate for functional studies and may contribute to personalized diagnosis and treatment options in future.
منابع مشابه
Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity.
The metalloprotease ADAMTS13 efficiently cleaves only the Tyr(1605)-Met(1606) bond in the central A2 domain of multimeric von Willebrand factor (VWF), even though VWF constitutes only 0.02% of plasma proteins. This remarkable specificity depends in part on binding of the noncatalytic ADAMTS13 spacer domain to the C-terminal alpha-helix of VWF domain A2. By kinetic analysis of recombinant ADAMTS...
متن کاملA common mechanism by which type 2A von Willebrand disease mutations enhance ADAMTS13 proteolysis revealed with a von Willebrand factor A2 domain FRET construct
Rheological forces in the blood trigger the unfolding of von Willebrand factor (VWF) and its A2 domain, exposing the scissile bond for proteolysis by ADAMTS13. Under quiescent conditions, the scissile bond is hidden by the folded structure due to the stabilisation provided by the structural specialisations of the VWF A2 domain, a vicinal disulphide bond, a calcium binding site and a N1574-glyca...
متن کاملA model for the conformational activation of the structurally quiescent metalloprotease ADAMTS13 by von willebrand factor
Blood loss is prevented by the multidomain glycoprotein von Willebrand factor (VWF), which binds exposed collagen at damaged vessels and captures platelets. VWF is regulated by the metalloprotease ADAMTS13, which in turn is conformationally activated by VWF. To delineate the structural requirements for VWF-mediated conformational activation of ADAMTS13, we performed binding and functional studi...
متن کاملSimultaneous exposure of sites in von Willebrand factor for glycoprotein Ib binding and ADAMTS13 cleavage: studies with ristocetin.
OBJECTIVE Platelet-bound von Willebrand factor (VWF) was recently demonstrated to be a better substrate for ADAMTS13, suggesting that 1 conformational change exposes both the glycoprotein Ibα binding site in the A1 domain and the ADAMTS13 cleavage site in the A2 domain. Because ristocetin induces VWF to bind glycoprotein Ibα in the absence of shear stress, we evaluated whether it could also enh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2016